Enhanced WLAN Performance with New Spectrum at 60 GHz and Visible Light

Sharan Naribole Advisor: Dr. Edward Knightly PhD Defense Talk

December 04, 2017

Emerging Spectrum: Properties

- 60 GHz
 - 7-14 GHz unlicensed bandwidth
 - Oup to 7 Gbps via 802.11ad
- Propagation characteristics
 - 20-40 dB increased attenuation
 - Highly-directional transmissions

Emerging Spectrum: Properties

- 60 GHz
 - 7-14 GHz unlicensed bandwidth
 - Oup to 7 Gbps via 802.11ad
- Propagation characteristics
 - 20-40 dB increased attenuation
 - Highly-directional transmissions

- Visible Light Communication (VLC)
 - Dual purpose: Illumination & communication
- Flicker free modulation
 - Low-cost photo diodes, cameras etc.

Emerging Spectrum: Challenges

- 60 GHz Multicast
 - Low directivity gain with wide beams

One transmission cannot reach entire group

Emerging Spectrum: Challenges

- 60 GHz Multicast
 - Low directivity gain with wide beams

One transmission cannot reach entire group

- VLC Impractical Uplink
 - Form factor and energy constraints

Uni-directional downlink channel

Thesis Contributions

60 GHZ

Scalable Directional Multicast

Visible Light

LiRa LiSCAN **Antenna Antenna DATA** CONTROL

Thesis Contributions

60 GHZ

Scalable Directional Multicast **BEAM CLIENT**

Visible Light

60 GHz System Model

Single RF Chain

- State-of-the-art systems (unlike 2.4/5 GHz MIMO)
- Single beam at any time

Switched Beam

- Sequential transmission to cover all clients
- TX time proportional to multicast group size

Multi-Level Codebook at AP

Multi-level Beams

- Was not required for unicast transmissions
- Flexibility to cover multiple clients simultaneously

Multi-Level Codebook at AP

Multi-level Beams

- Was not required for unicast transmissions
- Flexibility to cover multiple clients simultaneously

Minimizing Total Transmission Time

- Servable set C_{th}(ψ) for beam ψ
 - Client subset with power measure ≥ P_{min}
- Beam Group solution {ψ₁, ψ₂, ...,ψ_B}
 - Client subset vector {S(ψ₁),...,S(ψ_B)}
 - \circ MCS vector {R(ψ_1),...,R(ψ_B)}

$$\min_{B,\psi_1,...,\psi_B,S(\psi_1),...,S(\psi_B)} \frac{\sum_{b=1}^{B} \frac{1}{R(\psi_b)}$$

s.t.
$$\bigcup_{b=1}^{B} S(\psi_b) = \mathbb{U}$$
 Multicast client set

$$S(\psi_b) \subseteq C_{th}(\psi_b), \ 1 \le b \le B$$

Overhead

- Exhaustive Beam Training
 - \circ O(KN +c^K)
- Exhaustive Beam Grouping
 O(c^{K-1}N^{N/2} + 1)

K = No. of beamwidth levels

N = multicast group size

c = No. of fine beams / No. of wide beams

SDM Design Overview

- Multi-level Codebook Trees
 - Prune the codebook traversal leveraging client feedback

- Descending Order Traversal
 - Begin training at finest beam level
 - Overhead O(KN)

- Wide Beam Improvement Ratio
 - Improvement in TX time over an only finest beams solution
 - Complexity O(KN³)

AP

K = No. of beamwidth levels, N = multicast group size

Multi-Level Codebook Trees

- Codebook Trees [1,2]
 - Leverage client feedback to prune the training
 - Edges between beam patterns of adjacent levels

Basic Codebook Traversal

Minimal Training

- Client Feedback
 - RSSI power measure vector for the beam patterns received
- Ideal condition
 - Best beam at any level for each client matches with exhaustive training

Multi-Level Codebook Challenges

- Unreachability
 - Client not reachable at every level
 - Falls back to exhaustive training

- Imperfect Codebook traversal
 - AP's codebook independent of deployment
 - Reflectors/ blockage

SDM's Finest Beam Training

- Exhaustive training with all the finest level beams
- Solves unreachability challenge
- Ensures at least one high directivity beam for data transmission

INITIAL SOLUTION

Scalable Training Overhead O(KN)

K = No. of beamwidth levels, N = multicast group size

SDM's Beam Group Selection

Beam F₂

Wide Beam Improvement

- Not every wide beam improves (Beamwidth-MCS tradeoff)
- Rate determined by client with lowest power measure

Replace initial solution with a single wide beam

WIR
$$(\psi) = \sum_{f=1}^{3} \frac{1}{R(F_f)} / (\frac{1}{R(\psi)} + \frac{1}{R(F_3)})$$

Beam Ψ

Beam F₁

- Final Beam Grouping Solution
 - Descending order traversal of wide beams with WIR > 1

Scalable Beam Grouping Complexity O(KN3)

K = No. of beamwidth levels, N = multicast group size

SDM Implementation

Measurement Setup

- Horn antennas to emulate codebook levels at AP
- Multiple 5-level codebook trees

60 GHz WLAN trace-driven emulator

802.11ad packet sizes and timings

Experimental Evaluation

Practical Codebook Traversal Challenge

Training Overhead

Beam Grouping Efficiency

Beam Grouping Complexity

Throughput

Experimental Evaluation

Practical Codebook Traversal Challenge

Training Overhead

Beam Grouping Efficiency

Beam Grouping Complexity

Throughput

Baseline Strategies

Only Finest Beams strategy: individual narrow beams to each client

Exhaustive: Exhaustive training and optimal beam grouping

- Experiment Setup
 - Only data transmission
 - Training and grouping already done

- Data Sweep Time (Tper-sweep)
 - Time to transmit one bit of data

Beam grouping efficiency (strategy)

= T_{per-sweep} (exhaustive) / T_{per-sweep} (strategy)

- Single Client (unicast)
 - Same finest beam solution

- Medium group size
 - Only finest doesn't utilize wide beams

- Large group size
 - SDM within 80% of optimal solution

- Only Finest Solution Variance
 - Best solution for isolated clients
 - Probability reduces for larger groups

Factors

- Beam Training overhead (T_{training})
- Beam grouping complexity (T_{grouping})
- Beam grouping efficiency

Traffic Model

- Fully backlogged traffic
- Data sweeps of 8 KB

Exhaustive strategy as Baseline

- Training overhead (Ttraining, exh)
- Beam grouping complexity (Tgrouping, exh)

Multicast Data Transmission

Ttraining

Tgrouping

 $T_{TXOP} = 8.192 \text{ ms}$

Ttraining, exh -

grouping, exh -

Ttraining

Tgrouping

Single client (unicast)

- Same beam grouping solution
- Only finest has lowest training

Medium group size

- Objective is data transmission >> overhead
- SDM beam grouping efficiency within 90% of Exhaustive strategy

Large group size

- Reduced overhead for SDM
- Wide Beams unlike only Finest

Prior Work

- Multicast Communication in sub-6 GHz bands
 - Scheduling with idealized beam patterns [1,2]

In contrast: Multi-level codebook and beam irregularities at 60 GHz [3]

- Unicast Beam Training Overhead
 - Narrowest beams used for data transmission
 - OWider levels skipped by out-of-band solution [4] or gradient-based optimization [5]

In contrast: For multicast, wider beams cover multiple clients simultaneously

- [1] Sundaresan et al., "Optimal Beam Scheduling for Multicasting in Wireless Networks," in Proc. of ACM MobiCom, 2009.
- [2] Zhang et al., "Wireless Multicast Scheduling with Switched Beamforming Antennas," IEEE/ACM Transactions on Networking, 2012.
- [3] Nitsche et al., "Boon and bane of 60 GHz networks: Practical insights into beamforming, interference and frame level operation," in Proc. of ACM CoNEXT, 2015.
- [4] Nitsche et al., "Steering with Eyes Closed: mm-Wave Beam Steering without In-Band Measurement," in *Proc. of IEEE INFOCOM*, 2015.
- [5] Li et al., "On the Efficient Beam-Forming Training for 60GHz Wireless Personal Area Networks," IEEE Transactions on Wireless Communications, February 2

Thesis Contributions

60 GHZ

Scalable Directional Multicast

Visible Light

Objective

- High-performance WLAN system with:
 - VLC simplex downlink and RF uplink
 - o inter-operability with legacy Wi-Fi
 - o controlled impact on legacy Wi-Fi performance
- Prior Work Focus
 - Load balancing [1,2]
 - Wi-Fi contention for VLC downlink traffic [3]

VLC Feedback via RF for error control not addressed

- [1] Rahaim et al., "A Hybrid Radio Frequency and Broadcast Visible Light Communication System", IEEE GLOBECOM 2011.
- [2] Li et al., "Cooperative Load Balancing in Hybrid Visible Light Communications and WiFi", IEEE Transactions on Communications, 2015
- [3] W. Guo et al., "A parallel transmission MAC protocol in hybrid VLC-RF network.", Journal of Communications, 2015

Wi-Fi contention for VLC ARQ

Legacy WiFi:

VLC-WiFi:

Increased access delay and Wi-Fi degradation

LiRa: Light Radio WLAN

Architecture

- VLC and Wi-Fi integrated at the MAC layer
- AP-controlled feedback of VLC ARQ

LiRa: Light Radio WLAN

Architecture

- VLC and Wi-Fi integrated at the MAC layer
- AP-controlled feedback of VLC ARQ

AP-Spoofed Multi-Client ARQ

- Reserve Wi-Fi medium access for entire duration of multi-client feedback
- Eliminate the contention between VLC clients providing feedback

Feedback trigger time

Balance the LiRa responsiveness and Wi-Fi airtime overhead

LiRa Evaluation

Response Delay

Wi-Fi Impact

- Directly proportional to and lower than trigger time
- 15x reduction compared to per-client contention (PCC)
- Decreases inversely proportional to trigger time
- Reduces to 3% from an excessive value of 74% in PCC

Thesis Contributions

60 GHZ

Scalable Directional Multicast

Visible Light

LiRa **Antenna DATA**

Dense Wireless Sensor Networks

Network Model

- Hundreds of sensors [1,2]
- Coverage ~ 100m

Traffic Flow

- Data flow in the uplink
- Control messaging in downlink

Sensors

- Asynchronous traffic patterns
- Low-cost, power-limited

Access delay and energy consumption increase with contention

^[1] Ahmed et al., "A comparison of 802.11ah and 802.15. 4 for IoT." *ICT Express*, 2016.

^[2] Khorov et al., "A survey on IEEE 802.11 ah: An enabling networking technology for smart cities." Computer Communications, 2015.

VLC Contention Free Access

- Inherent broadcast
 - Distributed LED bulb luminaries for coverage
- Energy-Autonomous Wake-up VLC receiver
 - Tens of microwatt
 - Solar panel-based energy harvesting [1,2]

^[1] Ramos et al., "Towards energy-autonomous wake-up receiver using Visible Light Communication." in *Proc. of IEEE CCNC*, 2016.

^[2] Carrascal et al., "A novel wake-up communication system using solar panel and Visible Light Communication." in Proc. of IEEE GLOBECOM, 2014

VLC Contention-Free Access

- Minimize energy consumption
 - VLC wake-up receiver turns on RF module only for data transmission

Contention-Free Access

Sensor traffic generation unknown to AP

• RF Only:

VLC Control:

Contention-Free Access

• RF Only:

VLC Control:

Can we perform pipelined polling and still avoid collisions?

LiSCAN Pipelined Polling

Light poll abortion

Preemptive collision avoidance mechanism at AP

LiSCAN ACK over VLC

Light-Poll Retransmission Alignment

- Enables pipelined uplink transmissions
- ACK over VLC
 - Minimizes radio energy consumption

LiSCAN Evaluation

Protocols

- LiSCAN
- Contention-based radio access
- Contention-free radio access

Sensor traffic model

- Poisson Pareto burst process [1]
- 10 ms mean burst time length with 100 kbps data generation

Packet Model

100 byte packet aggregation

Simulation Setup

- Network
 - One hundred sensors
- Simulation Time
 - 1 second
- Polling
 - Randomized round-robin mechanism
- Energy Consumption
 - Typical sensor consumption states [1,2]
- Varying Traffic
 - Fraction of sensors generating traffic (Active Sensors)
 - Mean offered load per active sensor

^[1] Wan et al., "Modeling energy consumption of wireless sensor networks by systemc." in *Proc. of IEEE ICSNC*, 2010.

^[2] Abo-Zahhad et al., "An energy consumpton model for wireless sensor networks," in *Proc. of IEEE ICEAC*, 2015.

Energy consumption

Metric

Mean energy consumption per active sensor

Energy Consumption

Contention-based strategy

Negligible increase in transmission due to heavy traffic load

Contention-free strategy

- Transmission time increases with offered load before saturation
- Transmission time per sensor decreases with increasing number of active sensors

LiSCAN Energy Consumption

LiSCAN

- Over 5x reduction in energy consumption
- Radio awake only for data transmission
- Consumption by VLC wake-up receiver equal to radio sleep mode

Aggregate Throughput

Low traffic

- Polling overhead dominates performance in contention-free strategies
- Moderate-to-high traffic
 - LiSCAN's virtual full-duplex operation doubles data transmission time

Related Work

Radio-based contention

Bi-directional wideband radio channel [1], full-duplex radios [2]

In contrast: VLC uni-directional control channel with negligible energy consumption

Low-power radio

- Active wake-up receiver with energy shared with the sensor
- Synchronous traffic wake-up with FM low-power radio [3]

In contrast: Energy-autonomous VLC wake-up in LiSCAN for asynchronous traffic

Asynchronous energy-saving MAC protocols

Do not eliminate radio channel sensing [4]

In contrast: In LiSCAN, radio awake only for data transmission

- [1] Chintalapudi et al. "WiFi-NC: WiFi over narrow channels." in *Proc. of USENIX NSDI*, 2012.
- [2] Magistretti et al., "WiFi-Nano: Reclaiming WiFi Efficiency Through 800 ns Slots," in Proc. of ACM MobiCom, 2011.
- [3] Dias et al. "Green wireless video sensor networks using FM radio system as control channel," in Proc. of IEEE/IFIP WONS, 2016.
- [4] Rault et al. "Energy efficiency in wireless sensor networks: A top-down survey," Computer Networks, July 2014.

Thesis Contributions

60 GHZ

Scalable Directional Multicast

Visible Light

Acknowledgements

- Dr. Edward Knightly
- Dr. Behnaam Aazhang, Dr. Eugene Ng, Dr. Lin Zhong
- Rice Networks Group, Adriana, Joe, Erica, Ethan

- My family
- 8-monkeys and extd., Hike and Spike, Here Comes the Sun
- Indian Students at Rice, Rice ECE GSA, RCEL SCREECH

BACKUP

Multi-Level Codebook Trees

- Codebook Trees [1,2]
 - Leverage the client feedback to prune the training
 - Edges between beam patterns of adjacent levels

Array factor
$$AF(\psi,\theta) = \sum_{u=1}^{U} w(u) e^{j2\pi/\lambda(u-1)d\cos(\theta)}$$

$$G(\psi) = [AF(\psi, 0), ..., AF(\psi, 2\pi - 360/2\pi)]^T$$

Correlation =
$$|G(\psi_A)^H G(\psi_B)|$$

Basic Codebook Traversal

Minimal Training

- For reaching best beam at finest level
 - Client reachable at every codebook level
 - Best beams at adjacent levels share parent-child relationship

SDM Timeline

Ideal Codebook Traversal Probability

- Dataset
 - Each client location
 - Orientation classification
- Non-line of sight link (NLOS)
 - Increased path loss
- Wide beam levels
 - Low directivity gain

Transmission Performance Impact

- Sub-optimal beam selection at finest beam level
- Over 40% reduction in transmission efficiency even for a single client

Codebook Traversal Monotonicity

Given the best beam for a client at level "k", can at least one of its children serve the client?

For wider beam levels, monotonicity is as low as 16%

60 GHz Testbed Measurements

RMS Voltage vs Orientation

(a) The correlation in peak directions for different AP beamwidth at a fixed client location and orientation. (b) The diversity in the peak directions for different client orientations at a fixed location with 7 degree horn at the AP.

Training Overhead

Exhaustive and Only Finest Beam

- Fixed number of beacons
- Feedback increases with group size

Ascending Order Traversal

- Only children beams for traversal
- Exhaustive training for unreachable clients

SDM

Up to 44.5% reduction over exhaustive training

Beam Grouping Efficiency

Beam Grouping Efficiency

Equal time for data transmission

Single Client

- Sub-optimal beam for ascending traversal
- Imperfect codebook traversal

Medium group size

Only finest doesn't utilize wide beams

Large group size

SDM's mean beam grouping performance within 80% of optimal solution

Beam Grouping Computation

- Beam Grouping Computation
 - o 10 us for only finest beam solution computation with single client

Throughput Performance

Factors

- Beam Training overhead (Toverhead)
- Beam grouping computation (T_{grouping})
- Beam grouping efficiency (T_{per-sweep})

Data Transmission Time

$$T_{TX,strategy} = 8.192 \text{ ms}$$
+ $(T_{training, exhaustive} - T_{training, strategy})^{\circ}$
+ $(T_{grouping,exhaustive} - T_{grouping, strategy})$

Throughput_{strategy} α T TX,strategy * T per-sweep,strategy

Throughput w/o Grouping Complexity

Throughput - Alternative

LiRa: Congested Channel Feedback Delay

Goal

Analyze the impact of legacy Wi-Fi traffic on LiRa's feedback access delay

Metric

- Response Delay
- Computed per VLC downlink packet

Experiment

- Single LiRa client with feedback trigger time of 4 ms
- O No. of Wi-Fi traffic flows, Wi-Fi channel

Hypothesis

Response delay increases with number of traffic flows

LiRa: Congested Channel Feedback Delay

Mean response delay < Trigger Time

o Frames transmitted in the latter part have delay lower than feedback trigger time

Traffic flows

Response delay increases with increase in no. of flows

Feedback with Baseline Strategy

- Per-client Contention (PCC) Baseline
 - Each client takes part in 802.11 contention independently
 - Opportunistic aggregation of VLC ACK

2 Clients

- Channel 1 delay > 35 ms
- Co-channel interference

3 clients

VLC ARQ and legacy data collide

4 clients

Increased probability for VLC clients to win contention

Wi-Fi Throughput Degradation

- LiRa vs Client Size
 - Higher variance for short trigger times
- LiRa vs Trigger Time
 - VLC ARQ feedback airtime slower rate

- PCC for Single Client
 - Client contends after first packet received since last ARQ Feedback
- PCC for Multiple Clients
 - Increased airtime lost in per-client contention and collisions

Uplink Radio Access

Access delay and energy consumption increase with contention

Contention-Free Period Start

- RF channel access
 - Beacon indicating contention-fre period start

- VLC Channel Access
 - No VLC downlink data prior to CFP Beacon

- Light-poll Alignment
 - Ends SIFS duration after end of CFP start beacon

LiSCAN Packet Detection Timer

Packet Detection Timer

Begin countdown after light-poll transmission

8 μς	8µs	4µs	Variable
L-STF	L-LTF	L-SIG	Data

No Packet Detected

- Light-poll longer than packet detection time
- Complete light-poll transmission for next client

Pre-emptive Collision Avoidance

Pre-emptive Collision Avoidance

- Client A decodes Light-poll B
- Learns it's packet wasn't detected by AP

Radio Access Delay

Low traffic

- Polling overhead dominates performance in contention-free strategies
- Moderate-to-high traffic
 - Increase in collisions and retransmissions in contention-based strategy

Radio Interference

Thesis Contributions

SDM

- Directional communication challenge at 60 GHz for multicast
- Scalable training and beam grouping with near-optimal transmission efficiency

LiRa

- Integrated visible light and radio WLAN system architecture
- Scalable VLC feedback over Wi-Fi with controlled impact on legacy Wi-Fi

LiSCAN

- VLC uni-directional control channel for uplink radio access
- Virtual full-duplex operation with near-zero radio energy consumption