LiSCAN: Visible Light Uni-Directional Control Channel for Uplink Radio Access

Sharan Naribole, Samsung Semiconductor Inc., San Jose, CA USA Edward Knightly, Rice University, Houston, TX USA

IEEE WCNC Conference May 26, 2020

Dense Wireless Sensor Networks

- Network Model
 - Hundreds of sensors
 - Data flow mainly in the uplink
- Sensors
 - Low-cost, power-limited
 - Ideally, only awake for data transmission

- Traffic Model
 - Asynchronous traffic patterns
 - AP lacks perfect knowledge of when a sensor generates new data

Access delay and energy consumption can be significant with radio-only protocols in dense networks

RF

VLC Contention Free Access

- Inherent broadcast
 - Distributed LED bulb luminaries for coverage
- Energy-autonomous Wake-up VLC receiver [1,2]
 - Tens of microwatt
 - Solar panel-based energy harvesting

VLC Contention-Free Access

- Minimize energy consumption
 - VLC wake-up receiver turns on radio (RF) module only for data transmission

LiSCAN

Architecture

- VLC and Wi-Fi integrated at MAC layer
- Single layer-2 interface

Protocol

- Pre-emptive interference avoidance
- Pipelined polling with ACK over VLC

Contention-Free Access (1/2)

Sensor traffic generation unknown to AP

RF Only

VLC Control

Contention-Free Access (2/2)

RF Only

VLC Control

Can we perform pipelined polling and still avoid collisions?

LiSCAN Pre-emptive Collision Avoidance

- Light Poll aborted by AP upon detecting PHY preamble on RF channel
 - Client A's transmission in above example

LiSCAN ACK over VLC

- Light Poll Retransmission Alignment
 - o Enables pipelined uplink transmission increasing RF channel utilization
- ACK over VLC
 - Minimizes the energy consumption at sensor

LiSCAN Evaluation

Protocols

LiSCAN, Contention-based radio access and Contention-free radio access

- Sensor traffic model
 - Poisson Pareto burst process
 - 10ms mean burst time length with varying burst arrival rate (Mean offered load/ sensor)
 - Maximum of 100B packet aggregation
- Network
 - 100 sensors with varying fraction of sensors generating traffic (Active sensors)
- Polling
 - Randomized round-robin mechanism
- Energy Consumption
 - Typical sensor energy consumption states

Energy Consumption

- In contention-based strategy, negligible increase in transmission due to heavy traffic load
- Contention-based strategy
 - Transmission time increases with offered load before saturation
 - o Transmission time per sensor decreases with increase in number of active sensors
- LiSCAN provides 5X reduction in energy consumption
 - Radio awake only for data transmission
 - Consumption by VLC wake-up receiver is comparable to radio module sleep state

Aggregate Throughput

- Low traffic
 - o Polling overhead dominates performance in contention-free strategies
- Moderate-to-high traffic
 - o LiSCAN's virtual full-duplex operation doubles data transmission time

Related Work

- Hybrid VLC-RF WLANs
 - LiRA WLAN: VLC downlink data transmissions with triggered ACK over RF [1]

In contrast: VLC polling with RF data in uplink from sensors

- Low power radio
 - Active wake-up receiver sharing energy with sensor [2,3]

In contrast: Energy autonomous VLC wake-up in LiSCAN for asynchronous traffic

- Asynchronous energy-saving MAC protocols
 - Do not eliminate radio channel sensing

In contrast: In LiSCAN, radio awake only for data transmission

- [1] S. Naribole et al., "LiRa: a WLAN architecture for Visible Light Communication with a Wi-Fi uplink" *IEEE SECON*, 2017
- [2] J. Dias et al., "Green wireless video sensor networks using FM radio system as control channel" IEEE WONS, 2016.
- [3] D. Deng et al., "IEEE 802.11ba: Low-Power Wake-Up Radio for Green IoT," IEEE Communications Magazine, July 2019.

LiSCAN

Architecture

- VLC and Wi-Fi integrated at the MAC layer
- Single layer-2 interface

Protocol

- Pre-emptive Interference Avoidance
- Pipelined polling with ACK over VLC

Evaluation

- Implemented LiSCAN protocol in ns-3
- Reduces energy consumed and improves throughput